Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Coding with Clustering and Multi-message Communication (1903.01974v1)

Published 5 Mar 2019 in cs.IT, cs.DC, cs.LG, eess.SP, and math.IT

Abstract: Gradient descent (GD) methods are commonly employed in machine learning problems to optimize the parameters of the model in an iterative fashion. For problems with massive datasets, computations are distributed to many parallel computing servers (i.e., workers) to speed up GD iterations. While distributed computing can increase the computation speed significantly, the per-iteration completion time is limited by the slowest straggling workers. Coded distributed computing can mitigate straggling workers by introducing redundant computations; however, existing coded computing schemes are mainly designed against persistent stragglers, and partial computations at straggling workers are discarded, leading to wasted computational capacity. In this paper, we propose a novel gradient coding (GC) scheme which allows multiple coded computations to be conveyed from each worker to the master per iteration. We numerically show that the proposed GC with multi-message communication (MMC) together with clustering provides significant improvements in the average completion time (of each iteration), with minimal or no increase in the communication load.

Citations (38)

Summary

We haven't generated a summary for this paper yet.