Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A functional-model-adjusted spatial scan statistic (1903.01130v1)

Published 4 Mar 2019 in stat.ME

Abstract: This paper introduces a new spatial scan statistic designed to adjust cluster detection for longitudinal confounding factors indexed in space. The functional-model-adjusted statistic was developed using generalized functional linear models in which longitudinal confounding factors were considered to be functional covariates. A general framework was developed for application to various probability models. Application to a Poisson model showed that the new method is equivalent to a conventional spatial scan statistic that adjusts the underlying population for covariates. In a simulation study with univariate and multivariate models, we found that our new method adjusts the cluster detection procedure more accurately than other methods. Use of the new spatial scan statistic was illustrated by analysing data on premature mortality in France over the period from 1998 to 2013, with the quarterly unemployment rate as a longitudinal confounding factor.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.