Quantifying High-order Interdependencies via Multivariate Extensions of the Mutual Information
Abstract: This article introduces a model-agnostic approach to study statistical synergy, a form of emergence in which patterns at large scales are not traceable from lower scales. Our framework leverages various multivariate extensions of Shannon's mutual information, and introduces the O-information as a metric capable of characterising synergy- and redundancy-dominated systems. We develop key analytical properties of the O-information, and study how it relates to other metrics of high-order interactions from the statistical mechanics and neuroscience literature. Finally, as a proof of concept, we use the proposed framework to explore the relevance of statistical synergy in Baroque music scores.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.