Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Convergence and Applications of ADMM on the Multi-convex Problems (1902.10882v4)

Published 28 Feb 2019 in math.OC

Abstract: In recent years, although the Alternating Direction Method of Multipliers (ADMM) has been empirically applied widely to many multi-convex applications, delivering an impressive performance in areas such as nonnegative matrix factorization and sparse dictionary learning, there remains a dearth of generic work on proposed ADMM with a convergence guarantee under mild conditions. In this paper, we propose a generic ADMM framework with multiple coupled variables in both objective and constraints. Convergence to a Nash point is proven with a sublinear convergence rate $o(1/k)$. Two important applications are discussed as special cases under our proposed ADMM framework. Extensive experiments on ten real-world datasets demonstrate the proposed framework's effectiveness, scalability, and convergence properties. We have released our code at \url{https://github.com/xianggebenben/miADMM}.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.