Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Learning with Continuous Ranked Probability Score (1902.10173v2)

Published 26 Feb 2019 in cs.LG and stat.ML

Abstract: Probabilistic forecasts in the form of probability distributions over future events have become popular in several fields of statistical science. The dissimilarity between a probability forecast and an outcome is measured by a loss function (scoring rule). Popular example of scoring rule for continuous outcomes is the continuous ranked probability score (CRPS). We consider the case where several competing methods produce online predictions in the form of probability distribution functions. In this paper, the problem of combining probabilistic forecasts is considered in the prediction with expert advice framework. We show that CRPS is a mixable loss function and then the time independent upper bound for the regret of the Vovk's aggregating algorithm using CRPS as a loss function can be obtained. We present the results of numerical experiments illustrating the proposed methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Vladimir V'yugin (14 papers)
  2. Vladimir Trunov (6 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.