Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Part Mining for Fine-grained Image Classification (1902.09941v2)

Published 26 Feb 2019 in cs.CV

Abstract: Fine-grained image classification remains challenging due to the large intra-class variance and small inter-class variance. Since the subtle visual differences are only in local regions of discriminative parts among subcategories, part localization is a key issue for fine-grained image classification. Most existing approaches localize object or parts in an image with object or part annotations, which are expensive and labor-consuming. To tackle this issue, we propose a fully unsupervised part mining (UPM) approach to localize the discriminative parts without even image-level annotations, which largely improves the fine-grained classification performance. We first utilize pattern mining techniques to discover frequent patterns, i.e., co-occurrence highlighted regions, in the feature maps extracted from a pre-trained convolutional neural network (CNN) model. Inspired by the fact that these relevant meaningful patterns typically hold appearance and spatial consistency, we then cluster the mined regions to obtain the cluster centers and the discriminative parts surrounding the cluster centers are generated. Importantly, any annotations and sophisticated training procedures are not used in our proposed part localization approach. Finally, a multi-stream classification network is built for aggregating the original, object-level and part-level features simultaneously. Compared with other state-of-the-art approaches, our UPM approach achieves the competitive performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Runsheng Zhang (9 papers)
  2. Yaping Huang (20 papers)
  3. Qi Zou (9 papers)
  4. Jian Zhang (543 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.