Improving a tf-idf weighted document vector embedding
Abstract: We examine a number of methods to compute a dense vector embedding for a document in a corpus, given a set of word vectors such as those from word2vec or GloVe. We describe two methods that can improve upon a simple weighted sum, that are optimal in the sense that they maximizes a particular weighted cosine similarity measure. We consider several weighting functions, including inverse document frequency (idf), smooth inverse frequency (SIF), and the sub-sampling function used in word2vec. We find that idf works best for our applications. We also use common component removal proposed by Arora et al. as a post-process and find it is helpful in most cases. We compare these embeddings variations to the doc2vec embedding on a new evaluation task using TripAdvisor reviews, and also on the CQADupStack benchmark from the literature.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.