Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Contextualized Document Representation (2109.10509v1)

Published 22 Sep 2021 in cs.CL, cs.IR, and cs.LG

Abstract: Several NLP tasks need the effective representation of text documents. Arora et. al., 2017 demonstrate that simple weighted averaging of word vectors frequently outperforms neural models. SCDV (Mekala et. al., 2017) further extends this from sentences to documents by employing soft and sparse clustering over pre-computed word vectors. However, both techniques ignore the polysemy and contextual character of words. In this paper, we address this issue by proposing SCDV+BERT(ctxd), a simple and effective unsupervised representation that combines contextualized BERT (Devlin et al., 2019) based word embedding for word sense disambiguation with SCDV soft clustering approach. We show that our embeddings outperform original SCDV, pre-train BERT, and several other baselines on many classification datasets. We also demonstrate our embeddings effectiveness on other tasks, such as concept matching and sentence similarity. In addition, we show that SCDV+BERT(ctxd) outperforms fine-tune BERT and different embedding approaches in scenarios with limited data and only few shots examples.

Citations (1)

Summary

We haven't generated a summary for this paper yet.