Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Learning of Visual Tracking and Mapping Using Unsupervised Deep Neural Networks (1902.09826v2)

Published 26 Feb 2019 in cs.RO

Abstract: We proposed an end-to-end deep learning-based simultaneous localization and mapping (SLAM) system following conventional visual odometry (VO) pipelines. The proposed method completes the SLAM framework by including tracking, mapping, and sequential optimization networks while training them in an unsupervised manner. Together with the camera pose and depth map, we estimated the observational uncertainty to make our system robust to noises such as dynamic objects. We evaluated our method using public indoor and outdoor datasets. The experiment demonstrated that our method works well in tracking and mapping tasks and performs comparably with other learning-based VO approaches. Notably, the proposed uncertainty modeling and sequential training yielded improved generality in a variety of environments.

Summary

We haven't generated a summary for this paper yet.