Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cooperative Learning of Disjoint Syntax and Semantics (1902.09393v2)

Published 25 Feb 2019 in cs.CL, cs.AI, and cs.LG

Abstract: There has been considerable attention devoted to models that learn to jointly infer an expression's syntactic structure and its semantics. Yet, \citet{NangiaB18} has recently shown that the current best systems fail to learn the correct parsing strategy on mathematical expressions generated from a simple context-free grammar. In this work, we present a recursive model inspired by \newcite{ChoiYL18} that reaches near perfect accuracy on this task. Our model is composed of two separated modules for syntax and semantics. They are cooperatively trained with standard continuous and discrete optimization schemes. Our model does not require any linguistic structure for supervision and its recursive nature allows for out-of-domain generalization with little loss in performance. Additionally, our approach performs competitively on several natural language tasks, such as Natural Language Inference or Sentiment Analysis.

Citations (46)

Summary

We haven't generated a summary for this paper yet.