Papers
Topics
Authors
Recent
Search
2000 character limit reached

Statistics and Samples in Distributional Reinforcement Learning

Published 21 Feb 2019 in stat.ML and cs.LG | (1902.08102v1)

Abstract: We present a unifying framework for designing and analysing distributional reinforcement learning (DRL) algorithms in terms of recursively estimating statistics of the return distribution. Our key insight is that DRL algorithms can be decomposed as the combination of some statistical estimator and a method for imputing a return distribution consistent with that set of statistics. With this new understanding, we are able to provide improved analyses of existing DRL algorithms as well as construct a new algorithm (EDRL) based upon estimation of the expectiles of the return distribution. We compare EDRL with existing methods on a variety of MDPs to illustrate concrete aspects of our analysis, and develop a deep RL variant of the algorithm, ER-DQN, which we evaluate on the Atari-57 suite of games.

Citations (79)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.