Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Limited Lookahead in Imperfect-Information Games (1902.06335v2)

Published 17 Feb 2019 in cs.GT, cs.AI, and cs.MA

Abstract: Limited lookahead has been studied for decades in perfect-information games. We initiate a new direction via two simultaneous deviation points: generalization to imperfect-information games and a game-theoretic approach. We study how one should act when facing an opponent whose lookahead is limited. We study this for opponents that differ based on their lookahead depth, based on whether they, too, have imperfect information, and based on how they break ties. We characterize the hardness of finding a Nash equilibrium or an optimal commitment strategy for either player, showing that in some of these variations the problem can be solved in polynomial time while in others it is PPAD-hard, NP-hard, or inapproximable. We proceed to design algorithms for computing optimal commitment strategies---for when the opponent breaks ties favorably, according to a fixed rule, or adversarially. We then experimentally investigate the impact of limited lookahead. The limited-lookahead player often obtains the value of the game if she knows the expected values of nodes in the game tree for some equilibrium---but we prove this is not sufficient in general. Finally, we study the impact of noise in those estimates and different lookahead depths.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.