Papers
Topics
Authors
Recent
2000 character limit reached

Localized states of Dirac equation

Published 17 Feb 2019 in quant-ph | (1902.06232v1)

Abstract: In this paper, we introduce an extension of the Dirac equation, very similar to Dirac oscillator, that gives stationary localized wave packets as eigenstates of the equation. The extension to the Dirac equation is achieved through the replacement of the momentum operator by a PT-symmetric generalized momentum operator. In the 1D case, the solutions represent bound particles carrying spin having continuous energy spectrum, where the envelope parameter defines the width of the packet without affecting the dispersion relation of the original Dirac equation. In the 2D case, the solutions are localized wave packets and are eigenstates of the third component of total angular momentum and involve Bessel functions of integral order. In the 3D case, the solutions are localized spherical wave packets with definite total angular momentum.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.