Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Time Evolution of Gaussian Wave Packets under Dirac Equation with Fluctuating Mass and Potential (1601.03827v2)

Published 15 Jan 2016 in quant-ph

Abstract: Localization of relativistic particles have been of great research interests over many decades. We investigate the time evolution of the Gaussian wave packets governed by the one dimensional Dirac equation. For the free Dirac equation, we obtain the evolution profiles analytically in many approximation regimes, and numerical simulations consistent with other numerical schemes. Interesting behaviors such as Zitterbewegung and Klein paradox are exhibited. In particular, the dispersion rate as a function of mass is calculated, and it yields an interesting result that super-massive and massless particles both exhibit no dispersion in free space. For the Dirac equation with random potential or mass, we employ the Chebyshev polynomials expansion of the propagator operator to numerically investigate the probability profiles of the displacement distribution when the potential or mass is uniformly distributed. We observe that the widths of the Gaussian wave packets decrease approximately with the power law of order $o(s{-\nu})$ with $\frac{1}{2}<\nu<1$ as the randomness strength $s$ increases. This suggests an onset of localization, but it is weaker than Anderson localization.

Summary

We haven't generated a summary for this paper yet.