Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Deep Image Clustering With Spatial Transformer Layers (1902.05401v2)

Published 9 Feb 2019 in cs.CV, cs.LG, and stat.ML

Abstract: Image clustering is an important but challenging task in machine learning. As in most image processing areas, the latest improvements came from models based on the deep learning approach. However, classical deep learning methods have problems to deal with spatial image transformations like scale and rotation. In this paper, we propose the use of visual attention techniques to reduce this problem in image clustering methods. We evaluate the combination of a deep image clustering model called Deep Adaptive Clustering (DAC) with the Spatial Transformer Networks (STN). The proposed model is evaluated in the datasets MNIST and FashionMNIST and outperformed the baseline model.

Citations (5)

Summary

We haven't generated a summary for this paper yet.