Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long and Short Memory Balancing in Visual Co-Tracking using Q-Learning (1902.05211v1)

Published 14 Feb 2019 in cs.CV

Abstract: Employing one or more additional classifiers to break the self-learning loop in tracing-by-detection has gained considerable attention. Most of such trackers merely utilize the redundancy to address the accumulating label error in the tracking loop, and suffer from high computational complexity as well as tracking challenges that may interrupt all classifiers (e.g. temporal occlusions). We propose the active co-tracking framework, in which the main classifier of the tracker labels samples of the video sequence, and only consults auxiliary classifier when it is uncertain. Based on the source of the uncertainty and the differences of two classifiers (e.g. accuracy, speed, update frequency, etc.), different policies should be taken to exchange the information between two classifiers. Here, we introduce a reinforcement learning approach to find the appropriate policy by considering the state of the tracker in a specific sequence. The proposed method yields promising results in comparison to the best tracking-by-detection approaches.

Citations (5)

Summary

We haven't generated a summary for this paper yet.