Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Comparison of Photometric Redshift Techniques for Large Radio Surveys (1902.05188v1)

Published 14 Feb 2019 in astro-ph.IM

Abstract: Future radio surveys will generate catalogues of tens of millions of radio sources, for which redshift estimates will be essential to achieve many of the science goals. However, spectroscopic data will be available for only a small fraction of these sources, and in most cases even the optical and infrared photometry will be of limited quality. Furthermore, radio sources tend to be at higher redshift than most optical sources and so a significant fraction of radio sources hosts differ from those for which most photometric redshift templates are designed. We therefore need to develop new techniques for estimating the redshifts of radio sources. As a starting point in this process, we evaluate a number of machine-learning techniques for estimating redshift, together with a conventional template-fitting technique. We pay special attention to how the performance is affected by the incompleteness of the training sample and by sparseness of the parameter space or by limited availability of ancillary multi-wavelength data. As expected, we find that the quality of the photometric-redshift degrades as the quality of the photometry decreases, but that even with the limited quality of photometry available for all sky-surveys, useful redshift information is available for the majority of sources, particularly at low redshift. We find that a template-fitting technique performs best with high-quality and almost complete multi-band photometry, especially if radio sources that are also X-ray emitting are treated separately. When we reduced the quality of photometry to match that available for the EMU all-sky radio survey, the quality of the template-fitting degraded and became comparable to some of the machine learning methods. Machine learning techniques currently perform better at low redshift than at high redshift, because of incompleteness of the currently available training data at high redshifts.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.