Papers
Topics
Authors
Recent
2000 character limit reached

On the Expressive Power of Kernel Methods and the Efficiency of Kernel Learning by Association Schemes

Published 13 Feb 2019 in cs.LG and stat.ML | (1902.04782v1)

Abstract: We study the expressive power of kernel methods and the algorithmic feasibility of multiple kernel learning for a special rich class of kernels. Specifically, we define \emph{Euclidean kernels}, a diverse class that includes most, if not all, families of kernels studied in literature such as polynomial kernels and radial basis functions. We then describe the geometric and spectral structure of this family of kernels over the hypercube (and to some extent for any compact domain). Our structural results allow us to prove meaningful limitations on the expressive power of the class as well as derive several efficient algorithms for learning kernels over different domains.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.