Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Kernels for Structured Prediction using Polynomial Kernel Transformations (1601.01411v1)

Published 7 Jan 2016 in cs.LG and stat.ML

Abstract: Learning the kernel functions used in kernel methods has been a vastly explored area in machine learning. It is now widely accepted that to obtain 'good' performance, learning a kernel function is the key challenge. In this work we focus on learning kernel representations for structured regression. We propose use of polynomials expansion of kernels, referred to as Schoenberg transforms and Gegenbaur transforms, which arise from the seminal result of Schoenberg (1938). These kernels can be thought of as polynomial combination of input features in a high dimensional reproducing kernel Hilbert space (RKHS). We learn kernels over input and output for structured data, such that, dependency between kernel features is maximized. We use Hilbert-Schmidt Independence Criterion (HSIC) to measure this. We also give an efficient, matrix decomposition-based algorithm to learn these kernel transformations, and demonstrate state-of-the-art results on several real-world datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.