Papers
Topics
Authors
Recent
2000 character limit reached

Singly generated quasivarieties and residuated structures

Published 11 Feb 2019 in math.LO | (1902.04159v1)

Abstract: A quasivariety K of algebras has the joint embedding property (JEP) iff it is generated by a single algebra A. It is structurally complete iff the free countably generated algebra in K can serve as A. A consequence of this demand, called "passive structural completeness" (PSC), is that the nontrivial members of K all satisfy the same existential positive sentences. We prove that if K is PSC then it still has the JEP, and if it has the JEP and its nontrivial members lack trivial subalgebras, then its relatively simple members all belong to the universal class generated by one of them. Under these conditions, if K is relatively semisimple then it is generated by one K-simple algebra. It is a minimal quasivariety if, moreover, it is PSC but fails to unify some finite set of equations. We also prove that a quasivariety of finite type, with a finite nontrivial member, is PSC iff its nontrivial members have a common retract. The theory is then applied to the variety of De Morgan monoids, where we isolate the sub(quasi)varieties that are PSC and those that have the JEP, while throwing fresh light on those that are structurally complete. The results illuminate the extension lattices of intuitionistic and relevance logics.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.