Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Latent Space Reinforcement Learning for Steering Angle Prediction (1902.03765v1)

Published 11 Feb 2019 in cs.LG, cs.AI, cs.CV, cs.RO, and stat.ML

Abstract: Model-free reinforcement learning has recently been shown to successfully learn navigation policies from raw sensor data. In this work, we address the problem of learning driving policies for an autonomous agent in a high-fidelity simulator. Building upon recent research that applies deep reinforcement learning to navigation problems, we present a modular deep reinforcement learning approach to predict the steering angle of the car from raw images. The first module extracts a low-dimensional latent semantic representation of the image. The control module trained with reinforcement learning takes the latent vector as input to predict the correct steering angle. The experimental results have showed that our method is capable of learning to maneuver the car without any human control signals.

Citations (8)

Summary

We haven't generated a summary for this paper yet.