Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Network for NILM Based on Operational State Change Classification (1902.02675v2)

Published 5 Feb 2019 in cs.LG and stat.ML

Abstract: Energy disaggregation in a non-intrusive way estimates appliance level electricity consumption from a single meter that measures the whole house electricity demand. Recently, with the ongoing increment of energy data, there are many data-driven deep learning architectures being applied to solve the non-intrusive energy disaggregation problem. However, most proposed methods try to estimate the on-off state or the power consumption of appliance, which need not only large amount of parameters, but also hyper-parameter optimization prior to training and even preprocessing of energy data for a specified appliance. In this paper, instead of estimating on-off state or power consumption, we adapt a neural network to estimate the operational state change of appliance. Our proposed solution is more feasible across various appliances and lower complexity comparing to previous methods. The simulated experiments in the low sample rate dataset REDD show the competitive performance of the designed method, with respect to other two benchmark methods, Hidden Markov Model-based and Graph Signal processing-based approaches.

Citations (8)

Summary

We haven't generated a summary for this paper yet.