Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
93 tokens/sec
GPT OSS 120B via Groq Premium
462 tokens/sec
Kimi K2 via Groq Premium
254 tokens/sec
2000 character limit reached

Accuracy Evaluation of Overlapping and Multi-resolution Clustering Algorithms on Large Datasets (1902.01691v2)

Published 1 Feb 2019 in cs.DS and physics.data-an

Abstract: Performance of clustering algorithms is evaluated with the help of accuracy metrics. There is a great diversity of clustering algorithms, which are key components of many data analysis and exploration systems. However, there exist only few metrics for the accuracy measurement of overlapping and multi-resolution clustering algorithms on large datasets. In this paper, we first discuss existing metrics, how they satisfy a set of formal constraints, and how they can be applied to specific cases. Then, we propose several optimizations and extensions of these metrics. More specifically, we introduce a new indexing technique to reduce both the runtime and the memory complexity of the Mean F1 score evaluation. Our technique can be applied on large datasets and it is faster on a single CPU than state-of-the-art implementations running on high-performance servers. In addition, we propose several extensions of the discussed metrics to improve their effectiveness and satisfaction to formal constraints without affecting their efficiency. All the metrics discussed in this paper are implemented in C++ and are available for free as open-source packages that can be used either as stand-alone tools or as part of a benchmarking system to compare various clustering algorithms.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.