Notes on bilinear multipliers on Orlicz spaces
Abstract: Let $\Phi_1 , \Phi_2 $ and $ \Phi_3$ be Young functions and let $L{\Phi_1}(\mathbb{R})$, $L{\Phi_2}(\mathbb{R})$ and $L{\Phi_3}(\mathbb{R})$ be the corresponding Orlicz spaces. We say that a function $m(\xi,\eta)$ defined on $\mathbb{R}\times \mathbb{R}$ is a bilinear multiplier of type $(\Phi_1,\Phi_2,\Phi_3)$ if [ B_m(f,g)(x)=\int_\mathbb{R} \int_\mathbb{R} \hat{f}(\xi) \hat{g}(\eta)m(\xi,\eta)e{2\pi i (\xi+\eta) x}d\xi d\eta ] defines a bounded bilinear operator from $L{\Phi_1}(\mathbb{R}) \times L{\Phi_2}(\mathbb{R})$ to $L{\Phi_3}(\mathbb{R})$. We denote by $BM_{(\Phi_1,\Phi_2,\Phi_3)}(\mathbb{R})$ the space of all bilinear multipliers of type $(\Phi_1,\Phi_2,\Phi_3)$ and investigate some properties of such a class. Under some conditions on the triple $(\Phi_1,\Phi_2,\Phi_3)$ we give some examples of bilinear multipliers of type $(\Phi_1,\Phi_2,\Phi_3)$. We will focus on the case $m(\xi,\eta)=M(\xi-\eta) $ and get necessary conditions on $(\Phi_1,\Phi_2,\Phi_3)$ to get non-trivial multipliers in this class. In particular we recover some of the the known results for Lebesgue spaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.