Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Multi-Resolution Word Embedding for Document Retrieval from Large Unstructured Knowledge Bases

Published 2 Feb 2019 in cs.IR and cs.CL | (1902.00663v7)

Abstract: Deep LLMs learning a hierarchical representation proved to be a powerful tool for natural language processing, text mining and information retrieval. However, representations that perform well for retrieval must capture semantic meaning at different levels of abstraction or context-scopes. In this paper, we propose a new method to generate multi-resolution word embeddings that represent documents at multiple resolutions in terms of context-scopes. In order to investigate its performance,we use the Stanford Question Answering Dataset (SQuAD) and the Question Answering by Search And Reading (QUASAR) in an open-domain question-answering setting, where the first task is to find documents useful for answering a given question. To this end, we first compare the quality of various text-embedding methods for retrieval performance and give an extensive empirical comparison with the performance of various non-augmented base embeddings with and without multi-resolution representation. We argue that multi-resolution word embeddings are consistently superior to the original counterparts and deep residual neural models specifically trained for retrieval purposes can yield further significant gains when they are used for augmenting those embeddings.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.