Papers
Topics
Authors
Recent
2000 character limit reached

Clubmark: a Parallel Isolation Framework for Benchmarking and Profiling Clustering Algorithms on NUMA Architectures

Published 1 Feb 2019 in cs.DC, cs.SY, and physics.data-an | (1902.00475v1)

Abstract: There is a great diversity of clustering and community detection algorithms, which are key components of many data analysis and exploration systems. To the best of our knowledge, however, there does not exist yet any uniform benchmarking framework, which is publicly available and suitable for the parallel benchmarking of diverse clustering algorithms on a wide range of synthetic and real-world datasets. In this paper, we introduce Clubmark, a new extensible framework that aims to fill this gap by providing a parallel isolation benchmarking platform for clustering algorithms and their evaluation on NUMA servers. Clubmark allows for fine-grained control over various execution variables (timeouts, memory consumption, CPU affinity and cache policy) and supports the evaluation of a wide range of clustering algorithms including multi-level, hierarchical and overlapping clustering techniques on both weighted and unweighted input networks with built-in evaluation of several extrinsic and intrinsic measures. Our framework is open-source and provides a consistent and systematic way to execute, evaluate and profile clustering techniques considering a number of aspects that are often missing in state-of-the-art frameworks and benchmarking systems.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.