Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predictability of missing links in complex networks (1902.00035v1)

Published 31 Jan 2019 in physics.soc-ph, cond-mat.stat-mech, and cs.SI

Abstract: Predicting missing links in real networks is an important problem in network science to which considerable efforts have been devoted, giving as a result a vast plethora of link prediction methods in the literature. In this work, we take a different point of view on the problem and study the theoretical limitations to the predictability of missing links. In particular, we hypothesise that there is an irreducible uncertainty in link prediction on real networks as a consequence of the random nature of their formation process. By considering ensembles defined by well-known network models, we prove analytically that even the best possible link prediction method for an ensemble, given by the ranking of the ensemble connection probabilities, yields a limited precision. This result suggests a theoretical limitation to the predictability of links in real complex networks. Finally, we show that connection probabilities inferred by fitting network models to real networks allow to estimate an upper-bound to the predictability of missing links, and we further propose a method to approximate such bound from incomplete instances of real-world networks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.