Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Whole-body Bone Age Assessment Using Deep Hierarchical Features (1901.10237v1)

Published 29 Jan 2019 in cs.CV

Abstract: Bone age assessment gives us evidence to analyze the children growth status and the rejuvenation involved chronological and biological ages. All the previous works consider left-hand X-ray image of a child in their works. In this paper, we carry out a study on estimating human age using whole-body bone CT images and a novel convolutional neural network. Our model with additional connections shows an effective way to generate a massive number of vital features while reducing overfitting influence on small training data in the medical image analysis research area. A dataset and a comparison with common deep architectures will be provided for future research in this field.

Citations (3)

Summary

We haven't generated a summary for this paper yet.