Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Three-dimensional Backbone Network for 3D Object Detection in Traffic Scenes (1901.08373v2)

Published 24 Jan 2019 in cs.CV

Abstract: The task of detecting 3D objects in traffic scenes has a pivotal role in many real-world applications. However, the performance of 3D object detection is lower than that of 2D object detection due to the lack of powerful 3D feature extraction methods. To address this issue, this study proposes a 3D backbone network to acquire comprehensive 3D feature maps for 3D object detection. It primarily consists of sparse 3D convolutional neural network operations in the point cloud. The 3D backbone network can inherently learn 3D features from the raw data without compressing the point cloud into multiple 2D images. The sparse 3D convolutional neural network takes full advantage of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network feasible in a real-world application. Empirical experiments were conducted on the KITTI benchmark and comparable results were obtained with respect to the state-of-the-art performance for 3D object detection.

Citations (13)

Summary

We haven't generated a summary for this paper yet.