Papers
Topics
Authors
Recent
Search
2000 character limit reached

Meta-Learning for Contextual Bandit Exploration

Published 23 Jan 2019 in cs.LG and stat.ML | (1901.08159v1)

Abstract: We describe MELEE, a meta-learning algorithm for learning a good exploration policy in the interactive contextual bandit setting. Here, an algorithm must take actions based on contexts, and learn based only on a reward signal from the action taken, thereby generating an exploration/exploitation trade-off. MELEE addresses this trade-off by learning a good exploration strategy for offline tasks based on synthetic data, on which it can simulate the contextual bandit setting. Based on these simulations, MELEE uses an imitation learning strategy to learn a good exploration policy that can then be applied to true contextual bandit tasks at test time. We compare MELEE to seven strong baseline contextual bandit algorithms on a set of three hundred real-world datasets, on which it outperforms alternatives in most settings, especially when differences in rewards are large. Finally, we demonstrate the importance of having a rich feature representation for learning how to explore.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.