Papers
Topics
Authors
Recent
Search
2000 character limit reached

Cooperation Speeds Surfing: Use Co-Bandit!

Published 23 Jan 2019 in cs.NI and cs.GT | (1901.07768v1)

Abstract: In this paper, we explore the benefit of cooperation in adversarial bandit settings. As a motivating example, we consider the problem of wireless network selection. Mobile devices are often required to choose the right network to associate with for optimal performance, which is non-trivial. The excellent theoretical properties of EXP3, a leading multi-armed bandit algorithm, suggest that it should work well for this type of problem. Yet, it performs poorly in practice. A major limitation is its slow rate of stabilization. Bandit-style algorithms perform better when global knowledge is available, i.e., when devices receive feedback about all networks after each selection. But, unfortunately, communicating full information to all devices is expensive. Therefore, we address the question of how much information is adequate to achieve better performance. We propose Co-Bandit, a novel cooperative bandit approach, that allows devices to occasionally share their observations and forward feedback received from neighbors; hence, feedback may be received with a delay. Devices perform network selection based on their own observation and feedback from neighbors. As such, they speed up each other's rate of learning. We prove that Co-Bandit is regret-minimizing and retains the convergence property of multiplicative weight update algorithms with full information. Through simulation, we show that a very small amount of information, even with a delay, is adequate to nudge each other to select the right network and yield significantly faster stabilization at the optimal state (about 630x faster than EXP3).

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.