Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Uncertainty in Conditional Multi-Modal Retrieval Systems (1901.07702v1)

Published 23 Jan 2019 in cs.CV

Abstract: We cast visual retrieval as a regression problem by posing triplet loss as a regression loss. This enables epistemic uncertainty estimation using dropout as a Bayesian approximation framework in retrieval. Accordingly, Monte Carlo (MC) sampling is leveraged to boost retrieval performance. Our approach is evaluated on two applications: person re-identification and autonomous car driving. Comparable state-of-the-art results are achieved on multiple datasets for the former application. We leverage the Honda driving dataset (HDD) for autonomous car driving application. It provides multiple modalities and similarity notions for ego-motion action understanding. Hence, we present a multi-modal conditional retrieval network. It disentangles embeddings into separate representations to encode different similarities. This form of joint learning eliminates the need to train multiple independent networks without any performance degradation. Quantitative evaluation highlights our approach competence, achieving 6% improvement in a highly uncertain environment.

Citations (8)

Summary

We haven't generated a summary for this paper yet.