Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Learning of Neural Networks to Explain Neural Networks (extended abstract) (1901.07538v1)

Published 21 Jan 2019 in cs.LG, cs.AI, and stat.ML

Abstract: This paper presents an unsupervised method to learn a neural network, namely an explainer, to interpret a pre-trained convolutional neural network (CNN), i.e., the explainer uses interpretable visual concepts to explain features in middle conv-layers of a CNN. Given feature maps of a conv-layer of the CNN, the explainer performs like an auto-encoder, which decomposes the feature maps into object-part features. The object-part features are learned to reconstruct CNN features without much loss of information. We can consider the disentangled representations of object parts a paraphrase of CNN features, which help people understand the knowledge encoded by the CNN. More crucially, we learn the explainer via knowledge distillation without using any annotations of object parts or textures for supervision. In experiments, our method was widely used to interpret features of different benchmark CNNs, and explainers significantly boosted the feature interpretability without hurting the discrimination power of the CNNs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Quanshi Zhang (81 papers)
  2. Yu Yang (213 papers)
  3. Ying Nian Wu (138 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.