Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Debugging Frame Semantic Role Labeling (1901.07475v1)

Published 22 Jan 2019 in cs.CL

Abstract: We propose a quantitative and qualitative analysis of the performances of statistical models for frame semantic structure extraction. We report on a replication study on FrameNet 1.7 data and show that preprocessing toolkits play a major role in argument identification performances, observing gains similar in their order of magnitude to those reported by recent models for frame semantic parsing. We report on the robustness of a recent statistical classifier for frame semantic parsing to lexical configurations of predicate-argument structures, relying on an artificially augmented dataset generated using a rule-based algorithm combining valence pattern matching and lexical substitution. We prove that syntactic pre-processing plays a major role in the performances of statistical classifiers to argument identification, and discuss the core reasons of syntactic mismatch between dependency parsers output and FrameNet syntactic formalism. Finally, we suggest new leads for improving statistical models for frame semantic parsing, including joint syntax-semantic parsing relying on FrameNet syntactic formalism, latent classes inference via split-and-merge algorithms and neural network architectures relying on rich input representations of words.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Alexandre Kabbach (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.