Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Some implications of Chu's $_{10}ψ_{10}$ extension of Bailey's $_{6}ψ_{6}$ summation formula (1901.05330v2)

Published 5 Jan 2019 in math.NT

Abstract: Lucy Slater used Bailey's $6\psi_6$ summation formula to derive the Bailey pairs she used to construct her famous list of 130 identities of the Rogers-Ramanujan type. In the present paper we apply the same techniques to Chu's ${10}\psi_{10}$ generalization of Bailey's formula to produce quite general Bailey pairs. Slater's Bailey pairs are then recovered as special limiting cases of these more general pairs. In re-examining Slater's work, we find that her Bailey pairs are, for the most part, special cases of more general Bailey pairs containing one or more free parameters. Further, we also find new general Bailey pairs (containing one or more free parameters) which are also implied by the $_6\psi_6$ summation formula. Slater used the Jacobi triple product identity (sometimes coupled with the quintuple product identity) to derive her infinite products. Here we also use other summation formulae (including special cases of the $_6\psi_6$ summation formula and Jackson's $_6\phi_5$ summation formula) to derive some of our infinite products. We use the new Bailey pairs, and/or the summation methods mentioned above, to give new proofs of some general series-product identities due to Ramanujan, Andrews and others. We also derive a new general series-product identity, one which may be regarded as a partner to one of the Ramanujan identities. We also find new transformation formulae between basic hypergeometric series, new identities of Rogers-Ramanujan type, and new false theta series identities. Some of these latter are a kind of "hybrid" in that one side of the identity consists a basic hypergeometric series, while the other side is formed from a theta product multiplied by a false theta series. This type of identity appears to be new.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.