Papers
Topics
Authors
Recent
2000 character limit reached

Early Prediction of Alzheimer's Disease Dementia Based on Baseline Hippocampal MRI and 1-Year Follow-Up Cognitive Measures Using Deep Recurrent Neural Networks

Published 5 Jan 2019 in cs.CV | (1901.01451v1)

Abstract: Multi-modal biological, imaging, and neuropsychological markers have demonstrated promising performance for distinguishing Alzheimer's disease (AD) patients from cognitively normal elders. However, it remains difficult to early predict when and which mild cognitive impairment (MCI) individuals will convert to AD dementia. Informed by pattern classification studies which have demonstrated that pattern classifiers built on longitudinal data could achieve better classification performance than those built on cross-sectional data, we develop a deep learning model based on recurrent neural networks (RNNs) to learn informative representation and temporal dynamics of longitudinal cognitive measures of individual subjects and combine them with baseline hippocampal MRI for building a prognostic model of AD dementia progression. Experimental results on a large cohort of MCI subjects have demonstrated that the deep learning model could learn informative measures from longitudinal data for characterizing the progression of MCI subjects to AD dementia, and the prognostic model could early predict AD progression with high accuracy.

Citations (52)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.