Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Traffic Signal Control with Deep Reinforcement Learning An Exploratory Investigation (1901.00960v2)

Published 4 Jan 2019 in cs.SY and eess.SY

Abstract: This paper presents the results of a new deep learning model for traffic signal control. In this model, a novel state space approach is proposed to capture the main attributes of the control environment and the underlying temporal traffic movement patterns, including time of day, day of the week, signal status, and queue lengths. The performance of the model was examined over nine weeks of simulated data on a single intersection and compared to a semi-actuated and fixed time traffic controller. The simulation analysis shows an average delay reductions of 32% when compared to actuated control and 37% when compared to fixed time control. The results highlight the potential for deep reinforcement learning as a signal control optimization method.

Citations (19)

Summary

We haven't generated a summary for this paper yet.