The Divide-and-Conquer Framework: A Suitable Setting for the DDM of the Future (1901.00229v1)
Abstract: This paper was prompted by numerical experiments we performed, in which algorithms already available in the literature (DVS-BDDM) yielded accelerations (or speedups) many times larger (more than seventy in some examples already treated, but probably often much larger) than the number of processors used. Based on these outstanding results, here it is shown that believing in the standard ideal speedup, which is taken to be equal to the number of processors, has limited much the performance goal sought by research on domain decomposition methods (DDM) and has hindered much its development, thus far. Hence, an improved theory in which the speedup goal is based on the Divide and Conquer algorithmic paradigm, frequently considered as the leitmotiv of domain decomposition methods, is proposed as a suitable setting for the DDM of the future.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.