Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intent Detection and Slots Prompt in a Closed-Domain Chatbot (1812.10628v2)

Published 27 Dec 2018 in cs.CL and cs.AI

Abstract: In this paper, we introduce a methodology for predicting intent and slots of a query for a chatbot that answers career-related queries. We take a multi-staged approach where both the processes (intent-classification and slot-tagging) inform each other's decision-making in different stages. The model breaks down the problem into stages, solving one problem at a time and passing on relevant results of the current stage to the next, thereby reducing search space for subsequent stages, and eventually making classification and tagging more viable after each stage. We also observe that relaxing rules for a fuzzy entity-matching in slot-tagging after each stage (by maintaining a separate Named Entity Tagger per stage) helps us improve performance, although at a slight cost of false-positives. Our model has achieved state-of-the-art performance with F1-score of 77.63% for intent-classification and 82.24% for slot-tagging on our dataset that we would publicly release along with the paper.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Amber Nigam (5 papers)
  2. Prashik Sahare (1 paper)
  3. Kushagra Pandya (1 paper)
Citations (18)

Summary

We haven't generated a summary for this paper yet.