Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MT-BioNER: Multi-task Learning for Biomedical Named Entity Recognition using Deep Bidirectional Transformers (2001.08904v1)

Published 24 Jan 2020 in cs.CL, cs.LG, and stat.ML

Abstract: Conversational agents such as Cortana, Alexa and Siri are continuously working on increasing their capabilities by adding new domains. The support of a new domain includes the design and development of a number of NLU components for domain classification, intents classification and slots tagging (including named entity recognition). Each component only performs well when trained on a large amount of labeled data. Second, these components are deployed on limited-memory devices which requires some model compression. Third, for some domains such as the health domain, it is hard to find a single training data set that covers all the required slot types. To overcome these mentioned problems, we present a multi-task transformer-based neural architecture for slot tagging. We consider the training of a slot tagger using multiple data sets covering different slot types as a multi-task learning problem. The experimental results on the biomedical domain have shown that the proposed approach outperforms the previous state-of-the-art systems for slot tagging on the different benchmark biomedical datasets in terms of (time and memory) efficiency and effectiveness. The output slot tagger can be used by the conversational agent to better identify entities in the input utterances.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Muhammad Raza Khan (5 papers)
  2. Morteza Ziyadi (12 papers)
  3. Mohamed AbdelHady (2 papers)
Citations (44)

Summary

We haven't generated a summary for this paper yet.