Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Slot Tagging with Intent Features for Task Oriented Natural Language Understanding using BERT (2205.09732v2)

Published 19 May 2022 in cs.CL and cs.AI

Abstract: Recent joint intent detection and slot tagging models have seen improved performance when compared to individual models. In many real-world datasets, the slot labels and values have a strong correlation with their intent labels. In such cases, the intent label information may act as a useful feature to the slot tagging model. In this paper, we examine the effect of leveraging intent label features through 3 techniques in the slot tagging task of joint intent and slot detection models. We evaluate our techniques on benchmark spoken language datasets SNIPS and ATIS, as well as over a large private Bixby dataset and observe an improved slot-tagging performance over state-of-the-art models.

Summary

We haven't generated a summary for this paper yet.