Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Robustness of Task Oriented Dialog Systems (1911.05153v1)

Published 12 Nov 2019 in cs.CL and cs.AI

Abstract: Task oriented language understanding in dialog systems is often modeled using intents (task of a query) and slots (parameters for that task). Intent detection and slot tagging are, in turn, modeled using sentence classification and word tagging techniques respectively. Similar to adversarial attack problems with computer vision models discussed in existing literature, these intent-slot tagging models are often over-sensitive to small variations in input -- predicting different and often incorrect labels when small changes are made to a query, thus reducing their accuracy and reliability. However, evaluating a model's robustness to these changes is harder for language since words are discrete and an automated change (e.g. adding `noise') to a query sometimes changes the meaning and thus labels of a query. In this paper, we first describe how to create an adversarial test set to measure the robustness of these models. Furthermore, we introduce and adapt adversarial training methods as well as data augmentation using back-translation to mitigate these issues. Our experiments show that both techniques improve the robustness of the system substantially and can be combined to yield the best results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Arash Einolghozati (21 papers)
  2. Sonal Gupta (26 papers)
  3. Mrinal Mohit (4 papers)
  4. Rushin Shah (11 papers)
Citations (22)