Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Pauli-type coupling between spinors and curved spacetime (1812.09669v6)

Published 23 Dec 2018 in gr-qc and physics.class-ph

Abstract: In this study we prove that the Pauli interaction -- which is associated with a length parameter -- emerges when the minimal coupling recipe is applied to the non-degenerate version of the Dirac Lagrangian. The conventional Dirac Lagrangian is rendered non-degenerate if supplemented by a particular term quadratic in the derivatives of the spinors. For dimensional reasons, this non-degenerate Dirac Lagrangian is associated with a length parameter $\ell$. It yields the standard free Dirac equation in Minkowski space. However, if the Dirac spinor is minimally coupled to gauge fields, then the length parameter~$\ell$ becomes a physical coupling constant yielding novel interactions. For the U($1$) symmetry the Pauli coupling of fermions to electromagnetic fields arises, modifying the fermion's magnetic moment. In a second step we then investigate how analogous "Pauli-type" couplings of gravity and matter arise if fermions are embedded in curved spacetime. Minimal coupling of the Dirac field to the gauge field of gravity, the spin connection, leads to an anomalous spin-torsion interaction and a curvature-dependent mass correction. The relation of the latter to Mach's Principle is discussed. Moreover, it is found for a totally anti-symmetric torsion that an upper limit for the "strength" of the torsion exists in order for a solution to remain causal, while causality for a vector torsion requires a lower limit for its amplitude. We calculate the mass correction in the De~Sitter geometry of vacuum with the cosmological constant $\Lambda$. Possible implications for the existence of effective non-zero rest masses of neutrinos are addressed. Finally, an outlook on the impact of mass correction on the physics of "Big Bang" cosmology, black holes, and of neutron stars is provided.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. S. Gasiorowicz, Elementary particle physics (Wiley, New York, 1966).
  2. W. Pauli, Review of Modern Physics 13, 203 (1941).
  3. The proof of concept has in fact been delivered previously for the internal symmetry group SU(N)𝑁(N)( italic_N ) yielding the Yang-Mills theories [24, 25].
  4. S. Weinberg, The Quantum Theory of Fields, Vol. I (Cambridge University Press, 1996).
  5. H. Gies and J. Ziebell, Eur. Phys. J. C 80, 607 (2020), arXiv:2005.07586 [hep-th] .
  6. J. Schwinger, Phys Rev 73, 416 (1948).
  7. I. B. Logashenko and S. I. Eidelman, Phys. Usp. 61, 480 (2018).
  8. T. Aoyama et al., Phys. Rept. 887, 1 (2020), arXiv:2006.04822 [hep-ph] .
  9. A. Hoecker and W. J. Marciano, Muon Anomalous Magnetic Moment, Tech. Rep. (CERN, 2023) https://pdg.lbl.gov/2023/reviews/rpp2023-rev-g-2-muon-anom-mag-moment.pdf .
  10. D. P. Aguillard et al. (Muon g-2), Phys. Rev. Lett. 131, 161802 (2023), arXiv:2308.06230 [hep-ex] .
  11. The contribution of the Pauli term to higher order Feynman diagrams beyond one loop remain negligible as the modification of the vertex form factor from the Pauli term is of the order of 10−22superscript102210^{-22}10 start_POSTSUPERSCRIPT - 22 end_POSTSUPERSCRIPT and hence negligible [33].
  12. T. Frankel, The Geometry of Physics (Cambridge University Press, Cambridge, 2001).
  13. J. Struckmeier and D. Vasak, Astron Nachr/AN 342, 745 (2021), arXiv:2101.04467 [gr-qc] .
  14. D. Brill and J. Wheeler, Rev Mod Phys 29 (1957).
  15. J. Yepez, arXiv:1106.2037 [gr-qc]  (2008).
  16. We remark that this term also arises in the mechanical model of relativistic spin [34].
  17. J. Struckmeier and A. Redelbach, Int J Mod Phys E 17, 435 (2008), arXiv:0811.0508 .
  18. J. Struckmeier, J Phys G: Nucl Phys 40, 015007 (2013).
  19. D. Vasak, in Proceedings of the 32nd International Colloquium on Group Theoretical Methods in Physics (Group32) (2019).
  20. D. Sciama, Monthly Notices of the Royal Astronomical Society 113, 34 (1953).
  21. T. W. B. Kibble, J Math Phys 2, 212 (1961).
  22. F. W. Hehl, “Gauge Theory of Gravity and Spacetime,” in Einstein Studies (Springer New York, 2014) pp. 145–169.
  23. F. Hehl, J. Lemke,  and E. Mielke, “Energy-momentum and spin currents of matter fields,” in Geometry and Theoretical Physics (Springer, 1991) pp. 100–140.
  24. R. R. Sastry, “Quantum electrodynamics with the pauli term,”  (1999), arXiv:hep-th/9903179 [hep-th] .
  25. A. A. Deriglazov and W. G. Ramírez, Advances in Mathematical Physics 2017 (2017).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com