Papers
Topics
Authors
Recent
2000 character limit reached

Robustness of the Sobol' indices to marginal distribution uncertainty (1812.07042v1)

Published 17 Dec 2018 in stat.CO

Abstract: Global sensitivity analysis (GSA) quantifies the influence of uncertain variables in a mathematical model. The Sobol' indices, a commonly used tool in GSA, seek to do this by attributing to each variable its relative contribution to the variance of the model output. In order to compute Sobol' indices, the user must specify a probability distribution for the uncertain variables. This distribution is typically unknown and must be chosen using limited data and/or knowledge. The usefulness of the Sobol' indices depends on their robustness to this distributional uncertainty. This article presents a novel method which uses "optimal perturbations" of the marginal probability density functions to analyze the robustness of the Sobol' indices. The method is illustrated through synthetic examples and a model for contaminant transport.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.