Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic behavior of the $W^{1/q,q}$-norm of mollified $BV$ functions and applications to singular perturbation problems (1812.06358v1)

Published 15 Dec 2018 in math.AP, math-ph, math.FA, and math.MP

Abstract: Motivated by results of Figalli and Jerison and Hern\'andez, we prove the following formula: \begin{equation*} \lim_{\epsilon\to 0+}\frac{1}{|\ln{\epsilon}|}\big|\eta_\epsilon*u\big|q_{W{1/q,q}(\Omega)}= C_0\int_{J_u}\Big|u+(x)-u-(x)\Big|qd\mathcal{H}{N-1}(x), \end{equation*} where $\Omega\subset\mathbb{R}N$ is a regular domain, $u\in BV(\Omega)\cap L\infty$, $q>1$ and $\eta_\epsilon(z)=\epsilon{-N}\eta(z/\epsilon)$ is a smooth mollifier. In addition, we apply the above formula to the study of certain singular perturbation problems.

Summary

We haven't generated a summary for this paper yet.