Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Neural Network-based Classification of Crystal Symmetries from X-Ray Diffraction Patterns (1812.05625v1)

Published 13 Dec 2018 in cond-mat.dis-nn

Abstract: Machine learning algorithms based on artificial neural networks have proven very useful for a variety of classification problems. Here we apply them to a well-known problem in crystallography, namely the classification of X-ray diffraction patterns (XRD) of inorganic powder specimens by the respective crystal system and space group. Over 100 000 theoretically computed powder XRD patterns were obtained from inorganic crystal structure databases and used to train a deep dense neural network. For space group classification, we obtain an accuracy of around 54% on experimental data. Finally, we introduce a scheme where the network has the option to refuse the classification of XRD patterns that would be classified with a large uncertainty. This enhances the accuracy on experimental data to 82% at the expense of having half of the experimental data unclassified. With further improvements of neural network architecture and experimental data availability, machine learning constitutes a promising complement to classical structure determination methodology.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.