SimXRD-4M: Big Simulated X-ray Diffraction Data Accelerate the Crystal Symmetry Classification (2406.15469v2)
Abstract: Spectroscopic data, particularly diffraction data, contain detailed crystal and microstructure information and thus are crucial for materials discovery. Powder X-ray diffraction (XRD) patterns are greatly effective in identifying crystals. Although ML has significantly advanced the analysis of powder XRD patterns, the progress is hindered by a lack of training data. To address this, we introduce SimXRD, the largest open-source simulated XRD pattern dataset so far, to accelerate the development of crystallographic informatics. SimXRD comprises 4,065,346 simulated powder X-ray diffraction patterns, representing 119,569 distinct crystal structures under 33 simulated conditions that mimic real-world variations. We find that the crystal symmetry inherently follows a long-tailed distribution and evaluate 21 sequence learning models on SimXRD. The results indicate that existing neural networks struggle with low-frequency crystal classifications. The present work highlights the academic significance and the engineering novelty of simulated XRD patterns in this interdisciplinary field.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.