Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effective Łojasiewicz gradient inequality and finite determinacy of non-isolated Nash function singularities (1812.04883v1)

Published 12 Dec 2018 in math.AG

Abstract: Let $X\subset \mathbb{R}n$ be a compact semialgebraic set and let $f:X\to \mathbb{R}$ be a nonzero Nash function. We give a Solern\'o and D'Acunto-Kurdyka type estimation of the exponent $\varrho\in[0,1)$ in the {\L}ojasiewicz gradient inequality $|\nabla f(x)|\ge C|f(x)|\varrho$ for $x\in X$, $|f(x)|<\varepsilon$ for some constants $C,\varepsilon>0$, in terms of the degree of a polynomial $P$ such that $P(x,f(x))=0$, $x\in X$. As a corollary we obtain an estimation of the degree of sufficiency of non-isolated Nash functions singularities

Summary

We haven't generated a summary for this paper yet.