Łojasiewicz-type inequalities with explicit exponents for the largest eigenvalue function of real symmetric polynomial matrices (1501.01419v3)
Abstract: Let $F(x) := (f_{ij}(x)){i,j=1,\ldots,p},$ be a real symmetric polynomial matrix of order $p$ and let $f(x)$ be the largest eigenvalue function of the matrix $F(x).$ We denote by ${\partial}\circ f(x)$ the Clarke subdifferential of $f$ at $x.$ In this paper, we first give the following {\em nonsmooth} version of \L ojasiewicz gradient inequality for the function $f$ with an explicit exponent: For any $\bar x\in \Bbb Rn$ there exist $c > 0$ and $\epsilon > 0$ such that we have for all $|x - \bar{x}| < \epsilon,$ \begin{equation*} \inf { | w | \ : \ w \in {\partial}\circ f(x) } \ \ge \ c\, |f(x) - f(\bar x)|{1 - \frac{1}{\mathscr{R}(2n+p(n+1),d+3)}}, \end{equation*} where $d:=\max{i,j = 1, \ldots, p}\deg f_{i j}$ and $\mathscr{R}$ is a function introduced by D'Acunto and Kurdyka: $\mathscr{R}(n, d) := d(3d - 3){n-1}$ if $d \ge 2$ and $\mathscr{R}(n, d) := 1$ if $d = 1.$ Then we establish error bounds with explicitly determined exponents, local and global, for the largest eigenvalue function $f(x)$ of the matrix $F(x)$.