Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 227 tok/s Pro
2000 character limit reached

SDSS-IV MaStar -- A Large and Comprehensive Empirical Stellar Spectral Library: First Release (1812.02745v2)

Published 6 Dec 2018 in astro-ph.IM, astro-ph.GA, and astro-ph.SR

Abstract: We present the first release of the MaNGA Stellar Library (MaStar), which is a large, well-calibrated, high-quality empirical library covering the wavelength range of 3,622-10,354A at a resolving power of R~1800. The spectra were obtained using the same instrument as used by the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) project, by piggybacking on the SDSS-IV/APOGEE-2N observations. Compared to previous empirical libraries, the MaStar library will have a higher number of stars and a more comprehensive stellar-parameter coverage, especially of cool dwarfs, low-metallicity stars, and stars with different [alpha/Fe], achieved by a sophisticated target selection strategy that takes advantage of stellar-parameter catalogs from the literature. This empirical library will provide a new basis for stellar population synthesis, and is particularly well-suited for stellar-population analysis of MaNGA galaxies. The first version of the library contains 8646 high-quality per-visit spectra for 3321 unique stars. Compared to photometry, the relative flux calibration of the library is accurate to 3.9% in g-r, 2.7% in r-i, and 2.2% in i-z. The data are released as part of Sloan Digital Sky Survey Data Release 15. We expect the final release of the library to contain more than 10,000 stars.

Citations (46)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.